
Planning with DiSProD for the IPC 2023

Palash Chatterjee, Ashutosh Chapagain, Roni Khardon
Indiana University, Bloomington

{palchatt, aschap, rkhardon}@iu.edu

Abstract

DiSProD is an on-line planner suitable for hybrid domains. It
builds a computation graph capturing an approximation of the
distribution over future trajectories and rewards, conditioned
on a probabilistic open-loop policy. At each decision step,
DiSProD performs a parallel search over multiple policies,
each optimizing the approximate cumulative reward by dif-
ferentiating through the computation graph, and then uses the
first action from the maximizing policy. For the competition,
we introduce some variations on the original algorithms, in-
cluding propagation of individual stochastic trajectories and
a parallel search over gradient step sizes.

Introduction
Planning is one of the key problems in artificial intelligence
enabling agents to make informed decisions in dynamic and
complex environments. A key distinction is between online
planners and offline planners. Online planners perform an
optimization over a finite horizon at every decision step but
execute only the first action from the solution. This process
is repeated at each step of execution. On the other hand, of-
fline planners compute a complete solution at once and then
apply it at all future steps.

DiSProD (Chatterjee et al. 2023) is an online planner de-
veloped for environments with probabilistic transitions in
hybrid state and action spaces. It generalizes the ideas from
the SOGBOFA algorithm (Cui, Keller, and Khardon 2019)
that was restricted to domains with binary variables. DiS-
ProD builds a symbolic graph that captures the distribution
of future trajectories and rewards, conditioned on a given
policy. The distributions are approximated using a factored
product representation, in which binary variables are cap-
tured by their marginals, as in SOGBOFA, and continu-
ous variables are captured using their mean and variance.
To facilitate this, all sources of randomness in the transi-
tion function are first externalized (referred to as encapsula-
tion), and then rewritten using a Taylor approximation. This
approximate representation enables calculation of propaga-
tion of distributions which constitute the symbolic graph.
The construction is illustrated further in Figure 1. The sym-
bolic graph provides a differentiable representation of the

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

policy’s value, enabling efficient gradient-based optimiza-
tion for long-horizon search. The propagation of approxi-
mate distributions can be seen as an aggregation of many
trajectories, making it well-suited for dealing with sparse re-
wards and stochastic environments.

Figure 1: Schematic overview of the idea behind the con-
struction of analytic computation graph. (a) and (b) show the
original probabilistic simulator, and its encapsulated variant
where noise variables are represented as inputs. Using Tay-
lor’s approximation of this variant, we generate a third repre-
sentation (c) of the same transition function. All these take as
input a concrete state, action (and noise) values and compute
the next state. The key idea is to combine the approximation
with propagation of distributions to yield (d) that takes dis-
tributions on states, actions, and noise as input and produces
a distribution over next states. Stacking this model up to the
desired search depth yields symbolic propagation of distri-
butions (e).

Method
Here, we give an overview of the variants of the DiSProD
system as entered for the probabilistic track of the Interna-



tional Planning Competition (IPC), 2023.
DiSProD was written in Python using the JAX (Bradbury

et al. 2018) framework and expects an encapsulated and
differentiable transition model. Hence, for the competition,
we make use of the JaxRDDLCompiler which was pro-
vided to participants as part of pyRDDLGym (Taitler et al.
2022); we do not use the planner, and only use the com-
piled model to avoid the need to parse the RDDL code. The
original RDDL transition model samples noise variables im-
plicitly. To expose the noise variables to DiSProD, a copy of
the RDDL transition function is altered, on the fly, such that
the simulator is not affected and DiSProD has a compiled
version of the transition function in the format it expects.

Two variants were explored with the original DiSProD
system (Chatterjee et al. 2023). DiSProD-C uses a sec-
ond Taylor expansion when propagating distributions over
trajectories, while DiSProD-NV zeroes out the variance
terms in the second order Taylor expansion, effectively
propagating the means of the distributions. DiSProD-NV
yields smaller computation graphs and is significantly faster,
whereas DiSProD-C has a tighter approximation which is
supposed to yield more accurate value estimates. The com-
petition setup allows a relatively short time per step. We
therefore developed a third variant, DiSProD-S, which can
be seen as an intermediate variant. The idea is to modify
DiSProD-NV to stack up encapsulated versions of the tran-
sition function to construct the computation graph, so that
instead of propagating the mean, we propagate a stochastic
trajectory. This should have a similar time cost to DiSProD-
NV. It has the advantage of sampling from the distribution
in the search, but runs the risk of high variance in search
results. In this light, DiSProD-C can be seen as an approxi-
mate aggregation of all possible trajectories which is stable,
albeit possibly biased.

Embedding prior knowledge and Tuning the
planner

The main parameters in the system are search depth, num-
ber of restarts, gradient step size and the search variant (-C,
-NV, -S as above). Another parameter that impacts the per-
formance, is the weight multiplier (w) used in the approxi-
mations of non-differentiable functions.1 As the competition
restricts the time allowed per episode, a tradeoff is required
between these parameters.

IPC 2023 allowed for early tuning of parameters before
the evaluation phase. The search depth and the number of
restarts was fixed for each domain based on explorations of
the released instances. Note that DiSProD optimizes mul-
tiple policies in parallel using the idea of restarts. For the
IPC, we introduced a new heuristic, exploiting the idea of
parallel search to perform the search over multiple gradi-
ent step sizes as well. To decide what gradient step sizes
to search over, we compute the mean value of gradients of

1As discussed in (Chatterjee et al. 2023), changing the multi-
plier in the reward function can lead to a dense reward signal that
enables faster planning in some domains. In the compiler used for
IPC, a single scalar, whose value we control, impacts the multipli-
ers in all the non-differentiable functions, and not just the reward.

the action variables (∇a) in the computation graph using
a random observation from the environment and a random
action initialization. We use this as a heuristic and fix three
gradient step sizes - 1/(10∇a), 1/∇a, 10/∇a. Notice that this
gives us a matrix of step-sizes where each row represents
the step size for the corresponding restart and each column
represents the step-size to be used for that particular action
variable. In this way, unlike the original system, each opti-
mization step also chooses among the step sizes based on the
improvement in the approximate Q value. We observed that
while this heuristic very loose, it works well in most of the
domains.

IPC 2023 had an exploration phase during where 3 in-
stances from each of the domains were released. Experi-
menting with these instances, we realized that the perfor-
mance of the planner was better when w = 3 or 5. Fur-
ther, we observed that the performance of the -S and -NV
variants were similar while -C variant mostly timed out. As
discussed in (Chatterjee et al. 2023), the main bottleneck of
the -C variant is the size of the transition function which is
typically related to the number of state and action variables.
In the competition, all the domains either had a lot of state
variables or a lot of intermediate variables leading to large
transition function. We hypothesize this to be the reason for
the timeouts for the -C variant. Prior to the evaluation of an
instance, all planners were provided an hour of time accord-
ing to the competition rules. To decide on the best variant
(among -NV and -S) and the best w (3 or 5) for a particular
instance, we evaluate the planner 5 times using these combi-
nations and pick the one with the best average reward.

For some instances of RecSim with more than 2500 state
variables and more than 250 action variables, we include
a fallback method which reduces the search depth and the
number of restarts to 2 since otherwise even the -S and -
NV variant were timing out. By default the action space is
boolean of size nc × ni where nc and ni are number of cus-
tomers and number of items respectively. To reduce the di-
mensionality of the action space for the planner, we include
a translation layer that transforms the boolean action space
to a continuous one of size nc with range [0, ni].

External libraries
At present, the only major external libraries DiSProD uses
are JAX and OmegaConf (for parsing configuration files).
The competition specific solution also makes use of pyRD-
DLGym (Taitler et al. 2022) for parsing RDDL files.

Acknowledgements
This work was partly supported by NSF under grants
2002393 and 2246261. Some of the experiments in this
paper were run on the Big Red computing system at In-
diana University, supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive
Technology Institute.



References
Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary,
C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.;
Wanderman-Milne, S.; and Zhang, Q. 2018. JAX: compos-
able transformations of Python+NumPy programs.
Chatterjee, P.; Chapagain, A.; Chen, W.; and Khardon, R.
2023. DiSProD: Differentiable Symbolic Propagation of
Distributions for Planning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence.
Cui, H.; Keller, T.; and Khardon, R. 2019. Stochastic
planning with lifted symbolic trajectory optimization. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 119–127.
Taitler, A.; Gimelfarb, M.; Jeong, J.; Gopalakrishnan, S.;
Mladenov, M.; Liu, X.; and Sanner, S. 2022. pyRDDLGym:
From RDDL to Gym Environments. arXiv:2211.05939.


